Terminal Flight Data Manager (TFDM): Program Status Update

Presented to: CDM General Session Presented By: Douglas Swol, TFDM Deputy PM, AJM-224 Date: April 13, 2022

TFDM Program Overview

TFDM is the surface management solution for NextGen and iTBO.

https://www.faa.gov/air_traffic/technology/tfdm/

- **TFDM** will provide an integrated tower flight data automation system, which will improve controllers' common situational awareness.
- **TFDM will improve efficiencies** on the airport surface and terminal airspace by providing:
 - Electronic Flight Strips in the Tower
 - Traffic Flow Management
 Integration
 - Collaborative Decision
 Making for the Surface
 - Systems Consolidation

Key Benefits:

- Fuel Savings: 313M Gal.
- Carbon Emission Savings: 3M Metric Tons
- Improved Data Exchange
- Schedule Predictability

TFDM Capabilities

Electronic Flight Data (EFD)

TFDM will provide an improved Electronic Flight Data (EFD) exchange and Electronic Flight Strips (EFS) in the tower to replace printed flight strips. This functionality will be integrated with Flight Plans for automatic updating.

Traffic Flow Management (TFM)

TFDM will enhance the traffic flow management data integration with Time Based Flow Management (TBFM) and Traffic Flow Management System (TFMS) to enable airlines, controllers and airports to share and exchange real-time data. This will result in improved surface traffic management as well as improve the products produced by TFMS and TBFM.

Collaborative Decision Making for the Surface (S-CDM)

TFDM will provide a departure scheduler with live data provided by Air Traffic systems/controllers and Flight Service Providers. The system will provide a departure metering capability, runway balancing and other surface management tools, improving surface traffic flow management.

Systems Consolidation

TFDM will replace multiple unsupportable systems in the National Airspace System through integration of their functionality into TFDM. This achieves technology modernization, improved data sharing and lower maintenance costs. The systems to be consolidated include ARMT, DSP, EFSTS, AEFS, and SMA.

TFDM Electronic Flight Strips

- IMB	YOLD MISES	POSTPE	ROCOUP	NOTES	O D	VKY30-1		Sec.				5	andard		CD		06:
MULTI	ALL L	FLU		-	a		CHI.	ACID		BRACES	20			ATES	*	9	\$
~	INACTIVE (ASSIST) Manual - X			V	: 0 /	NON	I-PDC/CA	PDC/CARGO Manual -		X		INACTIVE (ASSIST)		Manua			
		РПМ 054	E 1	EOBT 0541	TOP	IT.	AOBT 0541	TMAT	AMAT	EFTT	DXAT	ATOT 0556	EDCT	ADDT 0000	Post		
2 ^	PROPC		JBU136		2635		+BROAK1 MAXXO ACH+ KPHX FORPE1 ABQ ACH./			.KJFK				0			
		8	F/A321/L		2	P85	P8541 7L						N				
			149 W		W	39	0								*		
			5	3											~		
		H/	s	INHIBIT	00	0	REQ-CFR	APREQ	SWAP	STOP	GS	NRA	FRC				
			RG	PRIORITY	RESUME		DEICE	ABORT	RTN	PUSH	GH	FDLY	0	ROUTE		_	
		KPHX J24.H	+.BRO CMS	AK1.MAX0 AWED.J121	O. ACH	H .FOI	N193CS	ACH_KA33Y.	PWA, KK36	E.RZCBWG	iBKWASE	BURDENNY	.MOL				
A961	104 XCN 4442 1344	11 409 80	-			8	SWA2500	354	ofter present work	× # /		_					
(237/L	P00.10 7%				903	8	F/8737/L 40)	resze 7L					13 ^	DE	FAULT		ACID
L1211	DETE SECO STREAM	MODE CARS	+++002.7		6474	8	UBU136 F/A321/L	niat nijat 7L ani	ANTARY REALING	an rata		411 PSC1	* 16522 CAL# 2	995 XA 107711.7	¥ SPLIT 1664	u.	
			ALLA BORD	OWN IN THE REAL PROPERTY IN	FTELD 42 SCHOOL	PIZELD IN MONIZ	NBCOT -	NUMB (2			. UA P	BTA BTA	2				
-			118.3	100.1	328.7	100.0	PRATTOR.	4713 603 4710 4710	CLEAK ATCS	100 10	D4.7 48	EALY DALY	UAL? WEA	_			

TFDM Surface Management

Collaboration and Data Exchange: At the Core of TFDM

Benefits of TFDM

- Surface Queue Management moves queueing delay from taxiway to gate/ramp
 - Reduces fuel burn and emissions
- Ability to prioritize flights
 - Shift delay from higher priority flights to lower priority flights pre-departure
- Shift Call-For-Release/En-Route delay from taxiway to gate
 - Reduces fuel burn and emissions

Improved Runway Load Balancing

- Small increases in throughput by better balancing departure demand across departure runways
- Improved Schedule Predictability
 - Metering times available from gate to spot to runway
 - Aligns surface schedule with en route constraints

TFDM Program Timeline Overview

COVID Impacts

- Almost all program travel stopped from March 2020 through January 2022
 - Most FAA facilities inaccessible for TFDM activities
- Activities Impacted
 - Operational Testing (at WJHTC and field facilities) stopped
 - Training (ATC and Tech Ops)
 - Implementation
 - Site Surveys
 - Hardware Installations
 - Interface Checkouts
 - Impacts to Other FAA Systems
- Software Development and Testing Continued (remotely)

TFDM System Configurations

The 89 Airports chosen for TFDM will receive one of two configurations:

onfigu 27 S	Iration A	 Full Functionality TFDM EFD, including electronic flight strips in towers Surface surveillance data integration 						
EFD	Systems Consolidation	 Surface Metering (includes full Decision Support Tool) 						
TFM	S-CDM	 TFM data exchange and integration SSA on TFMS TMU displays in the TRACON. ARTCC. and ATCSCC 						

Configuration B 62 Sites	Improved EFD exchange-only TFDM EFD, including electronic flight strips in towers 					
EFD Systems Consolidation	 SSA capability on TEMS TMU displays at sites with existing equipment 					

The physical TFDM architecture for Configuration A and B is identical; the difference between the configurations is software functionality enabled.

()

TFDM Deployment Sites

TFDM Interdependencies

External Interfaces

- Flight Operators (via SWIM)
- Airport Authorities (via SWIM)

- Towers (93 at 89 airports)
- TRACONs (58 via TFMS)
- ARTCCs (18 via TFMS)
- ATCSCC (via TFMS)
- WJHTC (Test and 2nd Level Engineering)
- MMAC (Academy and Depot)
- SOCC (RMM)
- OCC (RMM)

TFDM Program Status

Build 1 Key Site: CLE

- Accomplishments
 - New TFDM draft waterfall
 - Build 1.4 software development complete
 - Travel to field facilities PHX, CLE, CLT to install software / interface checkouts
 - Risk Reduction Testing at WJHTC

Planned Activities

- Formal 1.4 operational testing at the WJHTC March-April 2022
- Formal 1.4 operational testing at IOC site(s) Summer 2022 (NAC milestone)

Build 2 Key Site: CLT

Accomplishments

- Completed Build 2.0 formal software test at the WJHTC in January 2022
- Build 2.1 Delivered to WJHTC
- Vendor and flight operator testing on TFDM Testbed

Planned Activities

- Delivery of Build 2.1 to WJHTC (February 2022)
- Formal Build 2.1 software testing begins July 2022
- Build 2.2 (IOC Build) in development
- Continue onramping and test activities with vendors for the TFDM testbed

TFDM New Draft Waterfall

- Due to COVID, total TFDM waterfall delayed by ~2.5 years
 - Last site moves from 8/28 IOC to 4/31 IOC
 - Last Configuration A site, 4/28
- 21 sites swapped on TFDM waterfall (overall 89 site waterfall preserved)
 - Remove 21 sites with Low IFR/High VFR towers better served with Flight Data Transfer System (FDTS) to replace legacy EFSTS
 - Add 21 new sites:
 - 16 are PDC/CPDLC towers for better integration with DataComm
 - Higher volume IFR sites with more traffic to hub airports

TFDM Outreach and Collaboration

Surface NIWG and Surface – CDM Teams

- Collaborative Site Implementation Team (CSIT) (led by AJR – Keith Henry)
 - Establishes surface working group at each Config A site (27 total) to prepare stakeholders for TFDM
 - Provides Surface-CDM users guides, data guides
 - Conducts tech talks to prepare industry

TFDM Testbed

- Early opportunity for flight operators/vendors to test data connections with TFDM before deployment
- SWIM Industry-FAA Team (SWIFT)
 - Engage industry on the use of TFDM data via SWIM

Moving Forward in 2022

- Build 1 Cleveland OT Summer 2022
- Build 1 Cleveland IOC Fall 2022
- Additional B1 site deployments in CY2023

 IND, PHX, LAS, RDU, CMH, SJC, TPA
- Testing on B2 System at WJHTC
- Continued collaboration with industry!

Questions

